Biotic pump of atmospheric moisture

نویسندگان

  • A. M. Makarieva
  • V. G. Gorshkov
چکیده

Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Papers published in Hydrology and Earth System Sciences Discussions are under open-access review for the journal Hydrology and Earth System Sciences Abstract Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion EGU Abstract In this paper the basic geophysical and ecological principles are jointly analyzed that allow the landmasses of Earth to remain moistened sufficiently for terrestrial life to be possible. 1. Under gravity, land inevitably loses water to the ocean. To keep land moistened, the gravitational water runoff must be continuously compensated by the 5 atmospheric ocean-to-land moisture transport. Using data for five terrestrial transects of the International Geosphere Biosphere Program we show that the mean distance to which the passive geophysical air fluxes can transport moisture over non-forested areas, does not exceed several hundred kilometers; precipitation decreases exponentially with distance from the ocean. 2. In contrast, precipitation over extensive natural 10 forests does not depend on the distance from the ocean along several thousand kilometers , as illustrated for the Amazon and Yenisey river basins and Equatorial Africa. This points to the existence of an active biotic pump transporting atmospheric moisture inland from the ocean. 3. Physical principles of the biotic moisture pump are investigated based on the previously unstudied properties of atmospheric water vapor, which 15 can be either in or out of hydrostatic equilibrium depending on the lapse rate of air temperature. A novel physical principle is formulated according to which the low-level air moves from areas with weak evaporation to areas with more intensive evaporation. Due to the high leaf area index, natural forests maintain high transpiration fluxes, which support the ascending air motion over the forest and " suck in " moist air from the ocean, 20 which is the essence of the biotic pump of atmospheric moisture. In the result, the gravitational runoff water losses from the optimally moistened forest soil can be fully compensated by the biotically enhanced precipitation at any distance from the ocean. 4. It is discussed how a continent-scale biotic water pump mechanism could be produced by natural selection acting on individual trees. 5. Replacement of the natural 25 forest cover by a low leaf index vegetation leads to an up to tenfold reduction in mean continental precipitation and runoff, in contrast to the previously available estimates made without accounting for the …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biotic pump of atmospheric moisture as driver of the hydrological cycle on land

In this paper the basic geophysical and ecological principles are jointly analyzed that allow the landmasses of Earth to remain moistened sufficiently for terrestrial life to be possible. 1. Under gravity, land inevitably loses water to the ocean. To keep land moistened, the gravitational water runoff must be continuously compensated by the atmospheric ocean-to-land moisture transport. Using da...

متن کامل

Evapotranspiration: a Process Driving Mass Transport and Energy Exchange in the Soil-plant-atmosphere-climate System

[1] The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is ...

متن کامل

Investigation of the Relation between South and Southwest Iran's Heavy Rainfall with Atmospheric Rivers (ARs).

In this study, we tried to identify the sources of moisture and its direction of heavy rainfall in south and southwest of Iran by using a new algorithm based on atmospheric rivers. For this purpose, daily rainfall of 17 synoptic stations in the period 1986 to 2015 in south and southwestern Iran that have a common time span and fully cover the study area is used.Also from the data set of the Nat...

متن کامل

Ecological assessment of Hormozgan creeks (Khamir, Tiyab and Jagin) using AMBI biotic index

This study aimed to assess the ecological status of Khamir, Tiyab and Jagin creeks and the impact of human activities on the studied ecosystems using AMBI biological indicator. During the study period, 165 macro-benthos taxa belong to seven phyla including Annelids (65 taxa), Mollusca (65 taxa), Arthropods (28 taxa), Echinoderms (3 taxa), Hydrozoans (2 taxa), Nemertea (1 taxon) and Nematoda (1 ...

متن کامل

Relationship between Atmospheric Water Vapor Transfer and Daily Rainfall in Iran

Introduction Because the occurrence of precipitation is directly related to the humidity in the atmosphere or precipitation systems, the study of humidity in the form of precipitable water and the transfer of water vapor is considered in atmospheric studies. Convergence Moisture flux is effective on precipitation, so its effect is much greater in the warmer months, especially in the lower at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1985